5.5V Input, 100mA, **95nA Ultra-low Current Consumption**

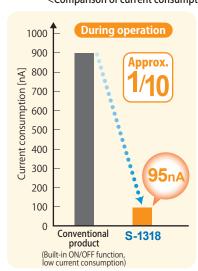
CMOS VOLTAGE REGULATOR

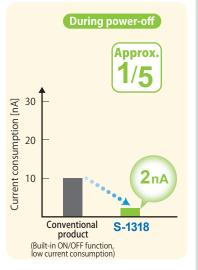
S-1318 Series

up to 100mA

S-1318 Series Q

- World's top class! Ultra-low current consumption of 95nA typ. (at no load)
- An ON/OFF circuit reduces current consumption to 2nA typ. during power-off, contributing to even longer battery life.
- The super-small 1.0mm square package makes even greater board miniaturization possible.




World's top class ultra-low current consumption!

The current consumption of S-1318 Series is greatly reduced compared to our conventional product. Suppressing current consumption during power-off to the limit level of 2nA contributes to longer battery life.

During operation During power-off 2nA tyr

<Comparison of current consumption with our conventional product>

Resistant to vibration and bending despite small package

The HSNT-4(1010) is a 1.0×1.0 mm super-small package. However, because the outer leads can be soldered, it can still provide higher mounting strength against

Built-in discharge shunt function

The output capacitance can be simultaneously discharged when the ON/OFF pin is set to OFF level. This makes it possible to easily design a falling sequence.

Application examples

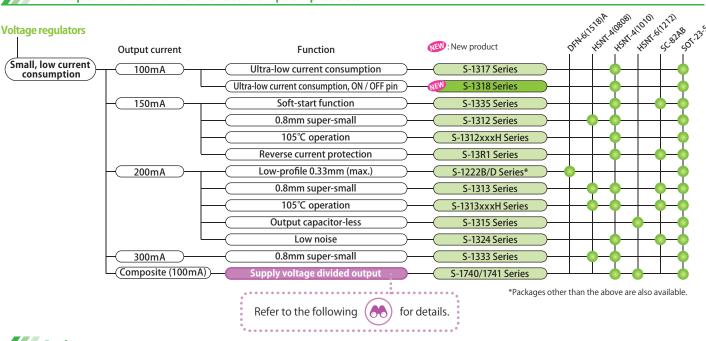
Glasses-like device

Beacon

Activity meter band

Energy harvesting IoT sensor node

Specifications


o openications		
Item	S-1318	
Output voltage	1.2V, 1.8V, 2.2V, 2.3V, 2.5V, 2.8V, 3.0V, 3.3V	
Input voltage	1.7 to 5.5V	
Output voltage accuracy	\pm 1.0% (1.2V output product: \pm 15mV) (Ta=+25°C)	
Dropout voltage	45mV typ. (2.5V output product, at I _{OUT} =10mA) (Ta=+25°C)	
Current consumption	During operation: 95nA typ.	During power-off: 2nA typ.
Output current	75mA (1.2V output product, at VIN≥VouT(S)+1.0V)	
	100mA (1.8V, 2.2V, 2.3V, 2.5V, 2.8V, 3.0V, 3.3V output product, at V _{IN} ≥V _{OUT(S)} +1.0V)	
Input / output capacitor	A ceramic capacitor (1.0 μ F or more)	
Built-in ON / OFF circuit	Discharge shunt function "available" / "unavailable" is selectable.	
	Pull-down function "available" / "unavailable" is selectable.	
Added function	Overcurrent protection circuit	

Packages

Lineup of small and low current consumption products

Packages (Unit:mm)

1.8×1.5×t0.33 (max.)

HSNT-4(0808)

0.8×0.8×t0.4 (max.)

HSNT-4(1010)

1.0×1.0×t0.4 (max.)

HSNT-6(1212)

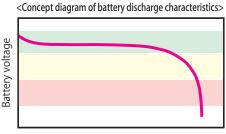
1.2×1.2×t0.4 (max.)

SC-82AB

2.1×2.0×t1.1 (max.)

SOT-23-5

2.8×2.9×t1.3 (max.)



For monitoring of battery voltage!

Introducing the S-1740/1741 Series voltage regulator with supply voltage divided output

The supply voltage divided output allows for regulator input voltage to be divided into $V_{\text{IN}}/2$ or $V_{\text{IN}}/3$ and output.

Using this function allows for a microcontroller to monitor battery voltage easily.

Discharge time

Example: Battery voltage monitoring by microcontroller

Mode 1: Full battery

ABLIC Inc.

www.ablic.com

Contact us www.ablic.com/en/semicon/sales/

S-1318 Series Q